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The T-matrix method has been used in determining the effect of point defects on the elas-
tic properties of the crystals having a CsCl structure. The expressions for the bulk elastic
constants have been obtained in terms of the local changes in the central- and the noncentral-
force constants. A numerical estimate has been made in the case of CslI containing some
impurity ions such as Rb*, K*, T1*, and In*. The necessary force-constant changes have
been taken from the results of the infrared lattice-absorption experiments. The calculated
elastic constants have been tentatively compared with the experimentally measured elastic
constants of a dilute alloy Mo-Re which has a bcc structure. Agreement is seen in the rela-

tive magnitudes of change in the elastic constants.

1. INTRODUCTION

The elastic properties of a crystal containing a
finite concentration of defects are significantly
altered. The local strains around the defect are
seen to be different from that of the host lattice.

A knowledge of these strains, induced locally by
the applied stress, is required to interpret a num-
ber of experimental measurements of the effects

of elastic strains!~* and electric fields® on the prop-
erties of crystals containing point defects. The
bulk elastic constants are also modified.®*” The T-
matrix method includes in a natural way the pecu-
larities of the discrete structureof the lattice. The
method was discussed with a statistical approach
by Elliott et al.,® who showed that the results ob-
tained were similar to those of the dynamical ap-
proach.’ Benedek and Nardelli'® have applied the
T-matrix method to discuss the influence of defects
in alkali halides; however, they did not make any
numerical estimate for the modified bulk elastic
constants.

In the present paper, we use the T-matrix method
for determining the effect of substantial point de-
fects on the elastic properties of the crystals of
CsCl structure. Expressions for the bulk elastic
constants have been obtained in terms of local
change of central- and noncentral-force constants.
Numerical estimates have been made in the case of
CsI containing some impurity ions such as Rb*, K*,
T1', and In*. They are compared with the available
experimental measurements of elastic constants of
a bce dilute Mo-Re alloy. The changes in the cen-

tral- and noncentral-force constants deduced from
the infrared lattice-absorption data! !2 have been
used.

II. THEORY

Let us consider a solid containing a low fraction-
al concentration p of similar substitutional point
defects. In order to understand the lattice dynamics
of the imperfect solid, one must evaluate the per-
turbed phonon propagator or Green’s function which
is defined by

G(2)=[Lo+ Py.c. (0?) - 21 ], W

where L, is the mass-reduced dynamical matrix of
the perfect host lattice and g,.c.(wz) is the perturba-
tion matrix caused by a specific configuration of
defects. For the explicit forms of these matrices,
we refer to an earlier paper.!® z=w?+2iwt* is the
complex squared frequency in the limit as ¢*—- 0*.
The propagator defined by Eq. (1) has been written
for a single specific configuration of defects. If

a statistical average over all the possible configura-
tions of defects is taken, the averaged perturbed
Green’s function is given by

(G(2))=G%2) - G%(2) = (G(2) ), (2)

where the self-energy Z is periodic like the perfect
phonon propagator G,. Because of the configuration
average, we can, therefore, go to the normal-mode
representation and write

(GE®))=[wf += & s)-2]?, ®)

where wé's denotes the squared frequency of the
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host lattice corresponding to the wave vector k
of the polarization branch s. If we consider only
multiple scattering by the same defect, and limit
ourselves only up to the first order of concentra-
tion of defects, the self-energy =(k, s) can be
written as!® 13

&, s)=p (K, s|T(2) |k, s), (4)

where T(z) is the T matrix for that single site and
is defined by

T(z) = P(w?) [I +g%(2)P(w?®)]™ . (5)

Here g(wz) is the perturbation matrix due to a
single defect and g°(z) is the Green’s-function ma-
trix in the impurity space. The poles of the propa-
gator given by Eq. (3) in the complex z plane give
us the squared frequencies and the phonon widths
for the perturbed phonons. The shift in the squared
frequency is given by the real part of the self-ener-
gy defined by Eq. (4). The squared frequencies of
the perturbed phonons are, thus, given by

& = wh +p Re(k, s|T(2)K, s) , (6)

where the tilde over wg , specifies the perturbed
phonon frequency.

The symmetry properties of the 7 matrix for
substitutional impurity in the CsCl structure have
been discussed in detail elsewhere.!® In this crys-
tal structure the T matrix, constituted by a sub-
stitutional defect and its eight neighbors, is 27x27.
The point-group symmetry of the defect is O, and
the 27 symmetry coordinates transform according
to Ay, Ay, E;, E,, Fy, 2F,,, 3F,,, and F,, ir-
reducible representations. In order to consider
the symmetric strains which are pertinent in the
present problem, we consider only the symmetrized
combinations for the T matrix. Since the strains
associated with F,, irreducible representations are
asymmetric, we shall not consider the F,, compo-
nent in the symmetrized 7" matrix.

III. BULK ELASTIC CONSTANTS

Consider the group velocities for the imperfect
lattice

d dw
vi"’:_a_ihi . (7)

It can be shown that only three independent elas-
tic constants, i.e., Cy;, Cy5 and C,, are required

TABLE I. Group velocities along symmetry directions.
pv%'s {100) (111) (110)
L Ciy 3(Cy+2C+4Cy)  3(Cyy +Cyy) =Cyy
Ty Cu 5(Cyy = Cy+Cyy) Cy
T, Cy $(Cyy=Cyp+Cyy) 3(Cyy —Cyy)
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TABLE II. Force-constant changes from infrared lattice-
absorption data (Refs. 11 and 17).

MM, X A/ M, A
System (10%sec™) (10%gsec™)  (10% sec™)) (10* gsec™)
Csl: Rb* -0.07 —0.154 0.030 0.066
Csl:K* -0.11 -0.243 0.023 0.051
CsI:TI* -0.33 -0.728
Csl:In* -0.35 —0.766

to give a complete account of the group velocities
in any direction, according to the usual relations.!*
In Table I, these relations are given for the sym-
metry directions; p denotes the density of the imper-
fect crystal which is related to the host-lattice
density p by

p=p(l+paM,/M), (8)

where M= M, + M_ is the mass of the host-lattice
unit cell and AM, is the local change of mass [the
upper (lower) sign is to be used when positive (neg-
ative) defects are considered]. To first order in
p, we can write

s 2]
Pk, = pvg,s[l +p<5w§'5>
AM

X s| T+ 0/ ) +p 2] @

where u;  is the host-lattice group velocity. From
Table I, the bulk elastic constants are seen to be
related to (g, ()¢ .o by

Cu= m)%oo,LA ’
Cyu= D500, 74 » (10)
Cre= 257}%10, LA~ éu - 2644 .

Consider now the components Ty of the symme-
trized T matrix which transforms according to the
irreducible representation I'.  When we consider
the limit ko= 2mkyr,—~ 0, where 7, is the interionic

distance, only a few matrix elements 7T are in-
volved in Eq. (9). They are!®

&, s| TFlu}E, s)=—(aM,/M)wi , ,

TABLE III. Atomic constants.
Ionic radii
Element Atomic weight (R)
Cs 132.91 1.69
1 126.91 2.16
Rb 85.48 1.48
K 39.10 1.33
Tl 204.39 0.95
In 114.76 0.81
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L5 T _L (e 30r
& LA| Ty, B LA) =57 7= ket (K00, TA| Ty, | £00, TA)—3M< NI g,
(K, LA| T, |k, LA) = 4 X A X ]
) R l/f & TA| T, |E TA)=0, (K00, TA|Tj,|£00,TA)=0,
( = p )> ’ (E’ SI TF2u|E’ s):fl(k4) ’ (E) Sl TEulE’ S)=f2(k4) ’
& LA| Ty, |, LA)= <w ) &, s| Ty, K, ) =f5(Y,
Fae 3\ 1+0/F,

where c.p. denotes cyclic permutations, A and \’
y ko lko 2+ C. p. (11) ‘are local changes of central- and noncentral-force
ky ’ constants, respectively, and

]

f 3= M,[24(0) - g5(0) + £5(0) + 2¢7(0) - 2¢5(0)]
F% = 3M.{[223(0) + £5(0) - 3g3(0) — £5(0) + 2g7(0) — 23(0) — 2g5(0) +6g3,(0)]
+(X'/2) [g3(0) + 2g%(0) - 32%(0) +g5(0) + 4275(0) — 4g5(0) + 5g5(0) — 323,(0)] (12)
+ 30/ M) {[g500) - £5(0) + g5(0) + 2¢3(0) — 25(0)]
x [g3(0) - £5(0) - £(0) +£5(0) + £15(0)] - 2[g§(0) - g3, (O} .

[

Note that the F,, symmetry coordinates trans- C -0 2p A by
form like the elements of a vector, so that they 2% 37, <1 +Mf1e T140/ f)
must not enter the elastic strain. Indeed, the F,, 1
matrix elements cancel out with the change of den- Cus c“+ L M‘}ﬁ& . (14)
sity term [Egs. (8) and (9)]. Also the F,,, E,, and 3rg  1+Mfa

A,, terms, which are of the order of 2% do not con-
tribute to the elastic constants. These facts are

consistent with the group analysis assignment of ir-
reducible representations (irr. reps.) to the com- AK = 2 A

The change in the bulk modulus AK =3A(1/B)
(where g is the compressibility) turns out to be

— (15)
ponents of the fourth-order elastic tensor: 7o 1+2/fy
Cy, may contain A,,, A, , E, irr. reps. , For central forces only, Egs. (14) reduce to
. . = 2 X
Cy, may contain A,,, A,,, E, irr. reps.
1z May 1gs Aogs Ly pSs. , Ciy Cu+301+>‘/fu ,
C,, may contain A,,, A,,, F, irr. reps. P
Note that A4,, irr. rep. does not appear in our Cia=Cla+3 — 370 140 /fy (16)
defect model. In Egs. (11), f,, and f, are the ef-
fective force constants for the A, and E, modes.
They are defined in terms of the zero-frequency TABLE IV. Values of the Green’ s-function matrix
Green’s functions similar to those of Benedek and elements for CsI at zero frequency in units of 10-%¢ sec?
Nardelli.'® We obtain atd.z K.
fre=M [g4(0 +g6(0) - 2g-,(0) +2g% 0) Green’s function Value
+ 2g9(0) . ngo 0)]_ , gg 1.64560
(13) &i 0.50280
M[g%(0) 0) +g4(0) — 2g7(0) + 2g5(0) & —0.14280
) &% 2.10640
-£5(0) - gH@)] " . g 1.37920
&5 0.27120
The definitions of gi(z) are given in Ref. 13. Us- gt 0.16800
ing Eqs. (9)-(11), we find g1 0.28240
&5 0.37720
Fp 2p Y ' &3 -0.08900
n=0Cnt 0<1+)‘/f1: +1+>\'/f,> ’ £10 —-0.09996
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TABLE V. p=0.05%change in elastic constants.
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TABLE VI. Percentage changes in the elastic constants
for Mo-Re(7%) alloy at 83 °K (Ref. 21).

Al
System  (10'g sec™) Cy;—CYy Cpp—Cl Cyu—-CY AK System Cy-C  Cp-Chp Cy-Ci AK
CsI:Rb* 0.066 -0.2 - 2.8 -1.5 -1.1 Mo-Re 0.4 6.3 4.9 2.8
0.000 - 0.6 -2.1 -1.8 -1.1
Csl:K* 0.051 - 0.7 - 4.1 -2,9 -1.9
0.000 - 1.0 - 3.5 -3.2 -1.9
~sl: T1* — 4.6 -16.5 -17.5 -8.9
Csl:In* s -5.2 —-18.4 -20.0 -9.9 f. The results for all the impurity systems are
presented in Table V. The elastic constants for
pure CsI are taken from Marshall and Kunkel.?
The fractional atomic concentration of impurities
-~ 0 2P A is taken to be 0. 05 and the value of interionic dis-
Caa™ C44+3—70 1) fo tance 7, is taken to be 3.95 A. From Table V we
where observe that the changes in the elastic constants

Soe = 3M[2g5(0) + g3(0) - 3g5(0) — g5(0) + 2¢3(0)
~2g3(0) — 22%(0) + 6g%,(0)] ™ .

The expression for the change in the bulk modulus
turns out to be unaffected.

From Egs. (16), we note that for central forces
only, the elastic constants of the pure lattice obey
Cauchy’s relation, but the same is not true for the
case of imperfect solids. The changes in the elas-
tic constants due to the presence of defects are
similar in the case of C;; and C,,, but they are dif-
ferent for C,,.

IV. CALCULATIONS AND RESULTS

Using Eqgs. (14)-(16), the bulk elastic constants
and bulk modulus are calculated for a CsI crystal
containing impurity ions Rb*, K*, Tl%, and In*. The
central- and noncentral-force-constant changes
have been recently determined by our group'? by
explaining the infrared lattice-absorption experi-
ments.''® These changes for different impurity
ions are presented in Table II. From Tables I
and III we note that the central-force constant be-
tween the impurity and host ion decreases as the
radius of the substituted impurity ion becomes
smaller compared to the host-lattice ion. Results
are also computed for central-force-constant
changes only. The Green’s-function matrix ele-
ments g(z) for CsI have been computed by Ram and
Agrawal'? in the breathing shell model.” The
breathing shell model has been used successfully
recently in explaining the lattice dynamics of
NaCl.'®!® However, no experiment has been per-
formed to measure the phonon frequencies of Csl.
The values of g(0) are presented in Table IV and
are utilized for the calculation of the parameters

are enhanced as the changes in the force constants
due to impurity ions are increased. For moderate
changes in the force constants, the elastic constants
are altered within 3-4%. For large alterations in
the lattice interaction around the impurity, the
changes are as high as 15-20%. The effect of the
impurities on the elastic constants of the pure crys-
tal is seen to be minimal for the case of C;; because
of the changes in central- and noncentral-force
constants in opposite directions.

The experimental measurements of the elastic
constants for CsI containing impurity ions are not
available. For the sake of a tentative comparison
we present in Table VI the changes in the elastic
constants observed experimentally by Davidson and
Brotzen?! for the case of a molybdenum-rhenium
alloy (rhenium 7%) which has a bcc lattice. At low
concentrations, they have seen a linear concentra-
tion dependence of elastic constants due to impuri-
ties. It is interesting to note that the masses of
Cs* and I" ions are approximately the same and in
this restricted sense the lattice tends to a mono-
atomic lattice. Therefore, the calculated changes
of elastic constants for the case of a monoatomic
lattice will not be substantially different from those
of a diatomic lattice. From Tables V and VI we
observe that the relative changes in the three elas-
tic constants in the case of CsI: Rb*(5%) and Mo-
Re(7%) are strikingly similar except for their signs.
In the Mo-Re alloy the central host-impurity-ion
interactions are stronger than that of the pure crys-
tal, whereas the noncentral part of the interaction
is weaker.
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